NEANIAS OPEN EVENT, BARCELONA

22 SEP 2022

Work Package 3: Atmospheric research services

Co-Authors:

- Dr. Nikos Chondros (NKUA)

- Eleni Petra (NKUA)
- Prof. Alessandro Tibaldi (Unimib)
- Sofia bressan (Unimib)
- Dr. Makis Douskos (NKUA)
- Ricardo Vitorino (Ubiwhere)
- Noela Pina (Ubiwhere)

www.neanias.eu

Novel EOSC Services for Emerging Atmosphere, Underwater & Space Challenges

Work package Leader:

(ATHENA)

Presenter:

Prof. Spyridon Rapsomanikis

Dr. Nikos Chondros (NKUA)

NEANIAS receives funding from European Union under Horizon 2020 Research and Innovation Programme under grant agreement No. 863448

Atmospheric Work package Goal

- Develop and integrate at EOSC three innovative crosscutting atmospheric services.
- > To allow tackling operationally atmospheric-related studies and engineering tasks
- > Towards engaging several user communities linked to the atmosphere, including:
 - meteorologists, industrial air pollutant emitters, ecologists, rural urban planners and air quality authorities, geohazards, civil protection, insurance, health agencies.

Services

- > A1: ATMO-FLUD Greenhouse gases flux density monitoring
- > **A2:**
 - > ATMO-STRESS Monitoring components in active tectonic regions
 - ATMO-SEISM Monitoring atmospheric perturbations and corelating them with seismic activity
- > A3: ATMO-4CAST Air quality estimation, monitoring and forecasting

Results produced by the NEANIAS project

- > Requirements collected, updated, and published
- Software for all 3 services deployed, operational, and published at EOSC for public consumption
- > Three validation rounds already done for all services
- > All above results are reported at the corresponding project deliverables

Service A1 (ATMO-FLUD) Overview

- > Calculating Flux Densities of momentum, energy and scalars (e.g., CO₂), using two methods:
 - > Eddy covariance
 - > Gradient method
- Started with existing proven algorithms, published in the peer-reviewed literature, implemented in Matlab, at TRL6
- Arrived at a TRL8 web service with user-friendly U/I, REST API, CI/CD, automated testing, integration with NEANIAS core services.

Service operation

 Input from sensors from a flux tower.

- Either "fast" data (10Hz), used as input to the Eddy Covariance algorithm
- Or "slow" data (1Hz) from 4 different heights, used as input to the Gradient Method
- Data analyzed and cleaned as part of the algorithm

> Output

- Graphs with data analysis and fluxes of the measured energy, momentum, or scalar(s)
- Text file with results
- Pdf report ready to be published

Applications

- > Scientific applications (e.g. climate change research, oceanography)
- > Regulatory applications (e.g. landfill monitoring, municipal emissions)
- Commercial applications (e.g. leak detection, agricultural carbon sequestration, irrigation and efficient water use)

Example use-case

- > AGRO4+ project, carbon footprint estimation for vineyard farmers
- Flux towers collect micro-meteorological data and CO₂ concentration
- > Data from the tower is fed to the ATMO-FLUD service
- Service produces average CO₂ flux density for the complete field, helping estimate the carbon absorbtion by the plants
- Further processing produces an estimation of the carbon footprint per bottle of produced wine.

Example result for CO2 flux densities

NEANIAS OPEN EVENT, BARCELONA

A2 Services: Overview

- The purpose is to monitor atmospheric perturbations and components in active tectonic regions by
 - Computing regional stress field of a study area using ATMO-STRESS service
 - Based on Lee, J. C., & Angelier, J. (1994). Paleostress trajectory maps based on the results of local determinations: the "Lissage" program.
 - 2. Correlating gas emissions with earthquakes and atmospheric conditions with **ATMO-SEISM** service
 - Based on Neri, M., Ferrera, E., Giammanco, S., Currenti,
 G., Cirrincione, R., Patanè, G., & Zanon, V. (2016). Soil radon measurements as a potential tracer of tectonic and volcanic activity.
- Integration with essential core services
 (AAI, logging, accounting, data sharing, and monitoring)

Service operation

- > Input files provided by the user
 - Coordinates (lat/lon): define the geographic position of the data
 - Azimuth or direction of the stress (0-360°)
 - Error evaluated on stress calculation
 - Reference coordinate system
- Analysis of input data and automatic evaluation of parameters
- > Outputs:
 - Trajectories map
 - Grid Map
 - Both results are generated in different formats (.json, .kml, .shp and .png)

Please select a file for cl	assification:					
Atmo-STRESS_Demo_	Dataset.txt	~				
Remove file						
Please select dat	a fields:					
Longitude / X	Latitude / Y		Azimuth		Angular Error	
Lon 🗘	Lat	\$	Azimuth	\$		
ON OS						
○ N ○ S Interpolation method:			Order:			
○ N ○ S Interpolation method: Distance Weighted		÷	Order: Global	¢		
N S Interpolation method: Distance Weighted		¢	Order: Global	¢		
N S Interpolation method: Distance Weighted Estimate parameters]	÷	Order: Global	¢		
N S Interpolation method: Distance Weighted Estimate parameters	•	¢	Order: Global	÷		
N S Interpolation method: Distance Weighted Estimate parameters Parameters: k	р	¢	Order: Global	÷		
N S Interpolation method: Distance Weighted Estimate parameters Parameters: k	p Auto	¢	Order: Global R Auto	\$		
N S Interpolation method: Distance Weighted Estimate parameters Parameters: k Output type:	p Auto	¢	Order: Global R Auto	\$		

ATMO-STRESS service: Example use-case

- > It is possible to use the service in both tectonic and volcanic area:
 - to calculate and reconstruct the stress field trajectories
 - to identify the possible uprise pathway of the magma and/or gases components
- Knowing the stress field of a specific area can be very useful:
 - In the **oil and gas/petroleum** industries to determine whether hydrocarbon
 - displacement can generate seismic activity
 - In the geothermal industries to define presence and position of ground discontinuities that allow geothermal fluids to rise to the surface

Service A3 (ATMO-4CAST) Overview

- > Purpose: Weather and Air quality estimation, monitoring and forecasting
- Composed by 3 different modules (weather, emissions and air quality simulations)
- > Last module (air quality) build as an Air Quality system
- > Started at TRL6 being based on different core models (AUSTAL2000; QTraffic and WRF):
 - Janicke, U. (2014). AUSTAL2000, Program Documentation of Version 2.6. 2014-02-24. Janicke Consulting, Dunum (Germany).
 - Dias D., Antunes A. P., Tchepel O., 2019. Modelling of emissions and energy use from biofuel fuelled vehicles at urban scale. Sustainability, 11(10), 2902.
 - UCAR (2019). Weather Research & Forecasting Model, Version 4 Modeling System User's Guide. <u>https://www2.mmm.ucar.edu/wrf/users/docs/user_guide_v4/</u>
- > Arrived at a TRL8 web service with user-friendly U/I, REST API, integration with NEANIAS core services.

NEANIAS OPEN EVENT, BARCELONA

22 SEP 2022

Service operation

- > Input files provided by the user for each module:
 - Weather (global meteorological data and configuration files)
 - Emissions (traffic fleet and activity data)
 - Air Quality (both local (traffic) and background contributions; local weather)
- > Data analyzed and adapted for each core model
- > Outputs:
 - 2D maps generated in different formats (csv; png; geojson; tiff; shapefile;netcdf)
 - 2D maps visualized on the web page

Example use-case: Stavanger city (Air Quality module)

Domain area: 11 km² **Spatial resolution:** 50 m **Duration:** 4 min

Input:

- Local traffic emissions (based on real traffic counting)
- Local weather obtained from local forecasts
- Vicinity contributions (named background concentrations) from CAMS (obtained by ADAM API)

Outputs:

2D Heat maps generated for every single hour in different formats (csv; png; tiff; geojson) and visualized on the webpage

PM2.5 daily concentrations

NEANIAS OPEN EVENT, BARCELONA

Novel EOSC Services for Emerging Atmosphere, Underwater & Space Challenges

NEANIAS receives funding from European Union under Horizon 2020 Research and Innovation Programme under grant agreement No. 863448

Thank you! Questions?

Nikos Chondros (NKUA) n.chondros@di.uoa.gr

Follow us:

http://www.neanias.eu https://twitter.com/Neanias_eu https://www.facebook.com/neanias.eu/ https://www.linkedin.com/groups/13786081/

22 SEP 2022