

European Commission

NEANAS - Novel Services for Emerging Atmosphere, Underwater & Space Challenges

SECTION3

SECTION3 – Atmospheric Research Services Participants ENTA of ATHENA, NKLA, UBWHERE, UNMB

RESPONSIBLE FOR SECTION3 S. Rapsomanikis, Leader of the Uhit on Environmental & Networking Technologies & Applications of ATHENA rapso@athenarc.gr

www.neanias.eu

Novel EOSC Services for Emerging Atmosphere, Underwater & Space Challenges

NEANIAS receives funding from European Union under Horizon 2020 Research and Innovation Programme under grant agreement No. 863448

ENTA of ATHENA SECTION 3– Atmospheric Research Services

3.1 Greenhouse gases flux density monitoring service implementation

The front-end of the service consists of a simple, user-friendly

interface that accepts the data and guides the user to obtain the desired

flux densities, and energy balance results. It is possible by the user to

upload the data from his/her own database or from any other database

DATASETS – A1								
id	Name of Dataset	Туре	Source	FAIR*	Size (GBs)			
1	ATHENS THERMOPOLIS	Eddy covariance	ENTA		5			
2	ATHENS THERMOPOLIS	AIRCRAFT- three level VARIANCES METHOD	ENTA		1			
3	VOA-Gr STATION	Eddy covariance	ENTA and at www.unitus.it		10			
4	VOA-Gr STATION	Gradient method at 4 heights	ENTA		3			
5	ATHENS THERMOPOLIS	Gradient method at 5 different heights	ENTA		1			
6	EUROPEAN FLUXES DATABASE CLUSTER	All greenhouse gases fluxes	EUROPEAN FLUXES DATABASE CLUSTER		????			
7	AMERI-FLUX database	All greenhouse gases fluxes	AMERI-FLUX database		?????			
8	FFNet DB	All greenhouse gases fluxes from Japan's stations	https://www2.ffpri.affrc.go.jp/labs/flux/datalist_e.html		????			

Seasonal, diurnal heat fluxes from our climate change observing station in XANTHI

Conversion of incoming solar energy into SENSIBLE (QE) and LATENT HEAT (QH) has a significant impact on local climate, as this process drives exchanges of energy and mass (e.g. water vapour or CO_2) between the surface of continents and atmosphere

UNMB, Italy

SECTION3 – Atmospheric Research Services

A2 – Monitoring atmospheric perturbations and components in active tectonic regions service implementation

Lead: UNMB

Participants: ATHENA, NKUA, NDA

Prof. Alessandro Tibaldi, UNMB, Italy

Data base collected up to now

DATASETS – A2					
id	Name of Dataset	Туре	Source		
1	Gas radon from Mt Etna faults	Excel table of values of gas radon emitted from the faults of Etna volcano	National Institute of Geophysics and Volcanology, Italy		
2	Gas and ash plumes from Etna crater	Excel table of values of various gases and ashes emitted from the summit vents of Etna	National Institute of Geophysics and Volcanology, Italy		
3	Gas from Nea Kameni volcano, Greece	Excel table of values of various gases emitted from the fractures on Nea kameni volcano, Santorini	Surveys by researchers of various universities		
4	Gas from Nisyros caldera, Greece	Excel table of values of various gases emitted from the fractures on Nisyros caldera	Surveys by researchers of various universities		
5	Map of all Etna faults	Data base containing the georeferenced data of all faults on Mt Etna	National Institute of Geophysics and Volcanology, Italy		
6	Seismicity of Mt Etna	Data base containing all foci and M of earthquakes that occurred at Mt Etna in the last tens of years	National Institute of Geophysics and Volcanology, Italy		
7	Meteorological data of each site	Excel tables of meteorological data			
8	Thermal anomalies at selected volcanoes	Csv table	MODIS/MODVOLC		
8	SO2 columns from satellites at various volcanoes	Csv table	Global Volcanism Program		

These data were examined in order to detect the possible correlations between:

- gas (radon) emission from faults on Mt Etna (Italy) and earthquake activity along the same

faults, also considering their kinematic type;

Fissure opened on Mt Etna eastern flank.

Main active faults of Mt Etna and main historic seismic events

These data were examined in order to detect the possible correlations between: - ash emission from volcanic craters at Nea Kameni (Santorini, Greece) and Mt Etna, and earthquake activity.

View of Nea Kameni active volcano, Santorini, Greece

Recent eruption at Mt Etna, Catania town is visible.

European Commission

UBIWHERE Portugal

SECTION3. A3 Urban air quality estimation, monitoring and forecasting

service implementation

Lead UBWHERE Participants NDA, ATHENA, NKLA

Porto, Portugal

Porto, Portugal

Sensing Stations

Discretely installed into the existing urban furniture (such as vertical signing, street lighting or electrical

posts)

The information collected by these stations can be used to improve urban planning, strategy and interaction with the city residents. These stations communicate in real time with Air Quality Management System through wireless communication, and are powered energetically by the structure in which they are installed.

Novel EOSC Services for Emerging Atmosphere, Underwater & Space Challenges

NEANIAS receives funding from European Union under Horizon 2020 Research and Innovation Programme under grant agreement No. 863448

Thank you

rapso@athenarc.gr

Follow us:

https://www.facebook.com/neanias.eu/ http://www.neanias.eu https://www.linkedin.com/groups/13786081/

